文字
缩放
增大字体
减小字体
陕西师范新开户送彩金 舒洪英教授:Dirichlet problem for a delayed diffusive hematopoiesis model

([西财新闻] 发布于 :2018-06-12 )

光华讲坛——社会名流与企业家论坛第5004

 

题:Dirichlet problem for a delayed diffusive hematopoiesis model

主讲人陕西师范新开户送彩金 舒洪英教授

主持人:经济数学学院 马敬堂教授

间:2018614日(星期四)16:00-17:00

点:2018年最新注册送彩金_新开户送彩金网站大全_无ip限制注册送彩金【唯一入口】♚柳林校区通博楼B412

主办单位:经济数学学院  科研处


主讲人简介:

舒洪英,2010年获哈尔滨工业新开户送彩金博士学位。2008年在加拿大阿尔伯塔新开户送彩金留学近两年,2011年至2014年分别在加拿大新不伦瑞克新开户送彩金,加拿大瑞尔森新开户送彩金任博士后研究员。2014年至2017年任职同济新开户送彩金特聘研究员,博士生导师。现任职于陕西师范新开户送彩金特聘教授,博士生导师。2011年获加拿大AARMS博士后基金,2016年获上海市浦江人才计划,2017年获陕西省百人计划特聘教授。主要研究微分动力系统及生物数学方面的应用,已发表SCI收录论文20余篇,其中有5ESI高被引论文,分别发表在Journal of Differential Equations, SIAM Journal of Applied Mathematics, Nonlinearity, Journal of Dynamics and Differential Equations, Journal of Mathematical BiologyBulletin of Mathematical Biology, JMAA, DCDS上。

内容提要:

In this talk, we study the dynamics of a delayed diffusive hematopoiesis model with two types of Dirichlet boundary conditions. For the model with a zero Dirichlet boundary condition, we establish global stability of the trivial equilibrium under certain conditions, and use the phase plane method to prove the existence and uniqueness of a positive spatially heterogeneous steady state. We further obtain delay-independent as well as delay-dependent conditions for the local stability of this steady state. For the model with a non-zero Dirichlet boundary condition, we show that the only positive steady state is a constant solution. Results for the local stability of the constant solution are also provided. By using the delay as a bifurcation parameter, we show that the model has infinite number of Hopf bifurcation values and the global Hopf branches bifurcated from these values are unbounded, which indicates the global existence of periodic solutions.

☆该新闻已被浏览: 次★

打印本文】 【关闭窗口